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1 Preamble

This was made a good deal after having taken the course. It will likely not be exhaustive. It may also
include some editorializing: bits of what I believe are relevant observations and/or information I have
come across.

2 Conventions

We’re using denominator-layout notation for matrix calculus. This convention suggests that ∇ f is a column
vector, i.e. for one-dimensional output f and a-dimensional input θ we’d have

∇θ f =


d f
dθ1
d f
dθ2
· · ·
d f
dθa

 ∈ Ra×1

For multidimensional input, we stack the gradients horizontally:

∇θ g =

 | · · · |
∇θ g1(θ) · · · ∇θ gb(θ)
| · · · |

 ∈ Ra×b

3 Introduction

("i.i.d" = "independent and identically distributed")

In probability theory, we are given the ground truth and try to understand the probability of certain
observations. (e.g., X ∼ Geom(p), what is Pr[X ≥ 3]?)

In statistics, we are given observations and try to understand the likelihood of a certain ground truth.
(e.g., if we observe iid X = (2, 3, 6, 3, 10) and we assume they come from a Geometric distribution, what p
is most likely to have generated the data?)

4 Useful Probability Concepts

4.1 Moment Generating and Characteristic Functions

Consider eX for a random variable X:

eX = 1 + X +
X2

2!
+

X3

3!
+ · · · = f (X)
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This looks like it could hold a lot of information about X’s moments. We can’t control what values X
takes (it’s a random variable after all), but we can insert another variable t and make a function of one r.v.
and one regular variable:

etX = f (tX) = 1 + tX +
(tX)2

2!
+ · · ·

The moment generating function of a random variable X, if it exists, is described as

mg fX(t) = EX [etX ] = 1 + tE[X] +
t2

2!
E[X2] + · · ·

The mgf has a useful property: if we take the derivative of the mgf k times and evaluate it at t = 0, we
recover E[Xk], i.e., mg f (k)X (t = 0) = E[Xk].

Say X has PDF f (x). Note that the mgf is essentially the Laplace Transform of f (x). This sometimes
diverges.

A larger set of functions will converge if you perform a Fourier transform on it ( f simply need be L1
integrable, which a probability must be essentially by definition since it must integrate to 1). In fact, this is
used and called the characteristic function of a random variable X:

c fX(t) = EX [eitX ] = 1 + itE[X] +
(it)2

2!
E[X2] + · · ·

In this case, we have c f (k)X (t = 0) = ikE[Xk].

Note that there is a one-to-one correspondence between probability distributions and their moment-generating

functions (if they exist) and characteristic functions. This means that CFX(t) → CFY(t) ⇐⇒ X
(d)−→ Y. (The

pathological functions that might ruin such a correspondence cannot be probability distributions.)

4.2 Convergences
Almost Surely

Tn
a.s.−−−→

n→∞
T ⇐⇒ Pr[{ω : Tn(ω)→n→∞ T(ω)}] = 1

In words, "No matter the event in the sample space Ω you can think of (if it has nonzero probability), it
converges to the same value."

In probability

Tn
P−−−→

n→∞
T ⇐⇒ Pr[|Tn − T| ≥ ε]→n→∞ 0 ∀ε > 0

In words, "The probability of Tn being more than ε away from T goes to 0 as n increases."

In distribution For all bounded and continuous functions f ,

Tn
(d)−−−→

n→∞
T ⇐⇒ E[ f (Tn)]

E−−−→
n→∞

[ f (T)] ∀bounded, continuous f

In words, "For bounded f , the average of f (Tn) converges to the average of f (T) as n increases." (A

simple example of why f must be bounded: It does not work with f (X) = X if Xn =

{
n, Pr = 1/n
0 o.w.

.)
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4.3 Applications of Convergences
Law of Large Numbers (LLN) For iid Xi,

X̄n :=
1
n ∑

i
Xi

P,a.s.−−−→
n→∞

E[X1] = µ

Central Limit Theorem (CLT) For iid Xi,

√
n

X̄n − µ

σ

(d)−−−→
n→∞

N (0, 1)

Rough rule of thumb: Close enough for n ≥ 30.

Hoeffding’s Inequality For i.i.d Xi ∈ [a, b](a.s.), any n > 0, we have an exponential tail bound on the
sample average:

Pr[|X̄n − µ| ≥ ε] ≤ 2 exp
{
− 2nε2

(b− a)2

}
∀ε > 0

Convergence of combinations of random variables. If Tn
a.s./P−−−→ T, Un

a.s./P−−−→ U, then Tn +Un, TnUn, and
Tn/Un converge almost surely/in probability to "what you’d expect".

Slutsky’s Theorem If Tn
(d)−→ T and Un

P−→ u for a constant u, then Tn + Un, TnUn, and Tn/Un converge in
distribution (d) to "what you’d expect".

Continuous Mapping Theorem If f is continuous,

Tn
a.s./P/(d)−−−−−→

n→∞
T =⇒ f (Tn)

a.s./P/(d)−−−−−→
n→∞

f (T)

5 Foundations of Inference

The outcome of a statistical experiment provides a sample X1, · · · , Xn ∼ P of n iid random variables. A
statistical model is a pair

(E, (Pθ)θ∈Θ)

where E is the sample space (usually ⊂ R), (Pθ)θ∈Θ is a family of probability measures on E, and Θ is a
parameter set.

Note: it doesn’t make sense to describe E using the parameters θ. For example, if describing Xi ∼ U[0, a]
for unknown a, the model is (R+, (U[0, a])a≥0).

A model is well-specified when the true probability distribution of Xi, P, is contained by the family of
probability measures of your model, (Pθ)θ∈Θ). That is to say, ∃θ ∈ Θs.t.P = P.

If Θ ⊂ Rd, d ∈ N+, the model is parametric. If Θ is infinite-dimensional, the model is nonparametric. If
Θ = Θp ×Θnp, the model is semiparametric; we’re interested in the finite dimensional Θp and the infinite-
dimensional Θnp is a nuisance parameter.

If a model is identifiable, then there is a injective mapping from θ to Pθ : (no two parameters can lead to
the same probability distribution).
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5.1 Estimator terminology
A statistic is any measurable function of a sample (essentially, if you can calculate it explicitly from the sam-
ple, it’s a measurable function). An estimator of θ is a statistic whose expression doesn’t depend on θ.

An estimator θ̂n of θ is weakly/strongly consistent if θ̂n
P/a.s.−−−→
n→∞

θ.

An estimator θ̂n of θ is asymptotically Normal if
√

n(θ̂n − θ)
(d)−−−→

n→∞
N (0, σ2). σ2 is then called the asymp-

totic variance of θ̂n.

bias(θ̂n) = E[θ̂n]− θ

An estimator with zero bias is unbiased.

Since an estimator is a random variable, one can compute its variance var(P) = E[(P − E[P]2)] =
E[P2]− (E[P])2.

The (quadratic) risk of an estimator θ̂n is R(θ̂n) = E[(θ̂n − θ)2] = Bias(θ̂n)2 + Variance(θ̂n).

6 (Multivariate) Delta Method

Let Zn ∈ Ra be a sequence of r.v. such that

√
n(Zn − θ)

(d)−−−→
n→∞

Na(0, Σ)

for a× a covariance matrix Σ.

If g : Ra → Rb (i.e., g(θ) = (g1(θ), · · · , gb(θ)), θ ∈ Ra) is continuously differentiable at the point θ, then we
can say:

√
n(g(Zn)− g(θ))

(d)−−−→
n→∞

Nb

(
0, (∇θ g(θ))TΣ(∇θ g(θ))

)

7 Confidence intervals

A confidence interval of level 1− α for θ is a random interval (depending on sample Xi) I whose boundaries
do not depend on θ and

Pθ [I 3 θ] ≥ 1− α ∀θ ∈ Θ

An asymptotic CI is the same as above, except asymptotically with increasing n, i.e.,

lim
n→∞

Pθ [I 3 θ] ≥ 1− α ∀θ ∈ Θ

We can use the Normal approximation and some manipulation to write asymptotic intervals of the form

θ̂n ∈
[

θ̂n −
qα/2√

n

√
Var(θ), θ̂n +

qα/2√
n

√
Var(θ)

]
But these are not asymptotic confidence intervals because they depend explicitly on θ.
Some methods for fixing this:
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1. Most commonly used (if asymptotic CI): Plug-in method. If using a consistent estimator, we have

that θ̂n
P/a.s.−−−→ θ. So θ̂n

θ → 1. By Slutsky’s Theorem, we find that we can simply "plug in" θ̂ where we
see θ:

θ̂n ∈
[

θ̂n −
qα/2√

n

√
Var(θ̂n), θ̂n +

qα/2√
n

√
Var(θ̂n)

]
2. Take a conservative bound, if a maximum for the variance of the parameter is known. (For example,

for Bernoulli models, Var(p) ≤ 1/4.)

3. Solve explicitly for θ, if possible. The earlier interval implies that

θ̂n −
qα/2√

n

√
Var(θ) ≤ θ ≤ θ̂n +

qα/2√
n

√
Var(θ)

If you can solve for θ, you would have endpoints of a valid interval.

8 Hypothesis Testing

Let Θ0 and Θ1 be disjoint subsets of Θ. Then we can set up a hypothesis test:{
H0 : θ ∈ Θ0

H1 : θ ∈ Θ1

H0 is the null hypothesis, H1 is the alternative hypothesis. These hypotheses do not play symmetric roles:
the data is only used to try to reject H0.

We define a test ψ ∈ {0, 1}: a statistic which indicates whether we reject H0. Often will take the form of
ψ = 1[Tn > Cα] (or absolute-value around Tn) for some test statistic Tn (which presumably depends on the
data, Tn = f (X1, · · · , Xn)) and value Cα. The rejection region is Rψ = {x ∈ En : ψ(x) = 1}

When do we reject? Often, we control for the probability of accidentally rejecting H0 when in reality
θ ∈ Θ0. This is called the Type I error of a test ψ:

αψ : Θ0 → [0, 1], θ 7→ Pθ [ψ = 1]

We ensure this value is below a (significance) level α, i.e., αψ(θ) ≤ α ∀θ ∈ Θ0.

We hope the probability of not rejecting H0 even though in fact θ ∈ Θ1 (Type II error of a test ψ) is low:

βψ : Θ1 → [0, 1], θ 7→ Pθ [ψ = 0]

We can describe the power of the test as πψ = inf θ ∈ Θ1(1− βψ(θ)). We hope to have high power.

The (asymptotic) p-value of a sample x1, · · · , xn for a given test ψα is the smallest (asymptotic) level α at
which ψ(x1, · · · , xn) = 1 (i.e., ψ rejects H0).

9 Methods for Estimation

The most commonly used tool in statistics, the "statistical hammer" is estimating expectations using sample
averages (knowing that they converge to the same value due to the Law of Large Numbers):

E[ f (X)]→ 1
n

n

∑
i=1

f (Xi)
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9.1 Differences between probability distributions
Total Variation Distance the total variation distance between two probability measures Pθ1 and Pθ2 is
TV(Pθ1 , Pθ2) := maxA⊂E

∣∣Pθ1(A)− Pθ2(A)
∣∣. If E is discrete, we can show that TV(Pθ1 , Pθ2) =

1
2 ∑x∈E

∣∣pθ1(x)− pθ2(x)
∣∣

(similar expression if E is continuous).
A problem with the TVD is that if we compare a continuous probability distribution to a discrete one,

the TVD is always 1. (For example, Xi ∼ Ber(p) → N(0, 1), but TV(PX̄n
, PN(0,1)) = 1 no matter the size of

n.)

Kullback-Leibler Divergence A more useful comparator between probability measures p and q is the
Kullback-Leiber (KL) divergence:

KL(p, q) =
∫

E
p(x) log

(
p(x)
q(x)

)
dx

(and analogously if E is discrete). Because the above is not symmetric and doesn’t always satisfy the
triangle inequality, it is not a distance but instead a divergence.

Fun fact: This is used in information theory, where it is called the relative entropy and describes the "cost"
in Shannon entropy paid for encoding p using q instead. H(p, q) = H(p, p) + KL(p, q).

Note that we can write KL(p, q) = Ep(x)[log
(

p(x)
q(x)

)
]. Meaning, we can estimate it using our data!

Say the true parameter is θ. Since KL(Pθ , Pθ′) describes the closeness of the two distributions, it would
make sense to set θ̂ = argminθ′ K̂L(Pθ , Pθ′). Some manipulation shows that in fact this is the same as maxi-
mizing the likelihood Ln(x1, · · · , xn, θ′) with respect to θ′.

Likelihood Given a statistical model (E, (Pθ)θ∈Θ) and a sample of iid r.v. X1, · · · , Xn, the likelihood of the
model is the map

Ln : En ×Θ→ R≥0,

(x1, · · · , xn, θ) 7→ fθ(x1, x2, · · · , xn)
i.i.d
=

n

∏
i=1

fθ(xi)

(PDF for continuous r.v.’s, PMF for discrete r.v.’s.)

To differentiate between probability (densities) and likelihood, consider that we are dealing with a function
f (~x,~θ). Loosely speaking, when we consider the observations fixed and let the model parameters vary, we
are calculating the likelihood (of the model given the data): f (~θ;~x). When we consider the model parameters
fixed and let the observations vary, we are calculating the probability (of some observations, given the model):
f (~x;~θ).

9.2 Maximum Likelihood Estimation
The maximum likelihood estimator (MLE) of θ is defined as

θ̂MLE
n = argmax

θ∈Θ
L(X1, · · · , Xn, θ) = argmax

θ∈Θ
log(L(X1, · · · , Xn, θ))

The Fisher information can be written as

In=1(θ) = VarX (∇θ (ln(Ln=1(θ; X)))) = −EX [Hθ (ln(Ln=1(θ; X)))]

(H is the Hessian, or "second-derivative matrix".)

In practice, you calculate the likelihood of the data logL(xi; θ), and find the θ such that ∇θ L = 0. This
gives you the form of the MLE θ̂MLE = f (Xi, n).
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9.2.1 Asymptotic Normality of MLE

If we have a number of conditions satisfied, we can guarantee asymptotic normality of the MLE. Let θ∗ ∈ Θ.
If

1. The model is identifiable.

2. For all θ ∈ Θ, the support of Pθ doesn’t depend on θ

3. θ∗ is not on the boundary of θ

4. I(θ) is (multiplicatively) invertible in a neighborhood of θ∗

5. (Some other technical conditions)

then:

√
n
(

θ̂MLE
n − θ∗

)
(d)−−−→

n→∞
N (0, I(θ)−1)

9.3 Method of Moments

Usually, E[X j] = f (θ). We also have that 1
n ∑i X j

i → E[X j] by the Law of Large Numbers. So, define a set of
sample moments and note that:

√
n

m̂1
· · ·
m̂d

−
 E[X]
· · ·

E[Xd]

 (d)−−−→
n→∞

Nd(0, Σ)

with Σ being the covariance matrix between (population/sample) moments.

Consider the map M:

M : Θ→ Rd, θ 7→ M(θ) = (m1(θ), · · · , md(θ))

If M is one-to-one, we can recover θ via θ = M−1(m1(θ), · · · , md(θ)).

So we define our method of moments estimator θ̂MM
n = M−1(m̂1, · · · , m̂d) if M−1 exists.

By considering g = M−1, if M−1 is continuously differentiable at θ, we can use the Delta Method to get
the asymptotic Normal distribution for

√
n(θ̂MM − θ).

In general, the Method of Moments isn’t as good as MLE, but if the MLE is intractable, the MM might
be worthwhile (since the equations are polynomial).

9.4 M-estimation

M-estimation is a superset of MLE. Instead of maximizing log(Ln) = ∑i logL(Xi, θ) w.r.t θ, we minimize
Q = ∑i ρ(Xi; µ) w.r.t µ for a function ρ you specify. The result is a minimizer µ̂n, which is an estimator for
the true minimizer µ∗. (If you assume a model with likelihood L, then setting ρ = −log(L1) recovers MLE
exactly.)
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9.4.1 Asymptotic Normality of m-estimator

Let J(µ) = ∂2Q
∂µ∂µT (µ)

regularity conditions
= EX1

[
∂2ρ

∂µ∂µT (X1; µ)
]
. Let K(µ) = Cov

(
∂ρ
∂µ (X1; µ)

)
. (For MLE, J(θ) =

K(θ) = I(θ).)

If:

1. µ∗ is the only minimizer of Q.

2. J(µ) is invertible for all µ ∈ M

3. (Some other technical conditions)

then:

√
n (µ̂n − µ∗)

(d)−−−→
n→∞

N
(

J(µ∗)−1K(µ∗)J(µ∗)−1
)

10 Hypothesis Testing Revisited.

10.1 The χ2
d distribution

The χ2 distribution with d degrees of freedom is the probability law governing the sum of iid N(0, 1) r.v.’s:

X =
d

∑
i=1

Z2
i , Zi

iid∼ N (0, 1) =⇒ X ∼ χ2
d

One can show that χ2
d = Gamma(α = d

2 , β = 1
2 ). Another useful relationship is that

Z ∼ Nc(0, Id) =⇒ ‖Z‖2
2 ∼ χ2

d

10.2 Cochran’s Theorem and the Student’s T distribution

With some elbow grease, one can show Cochran’s Theorem: for X1, · · · , Xn, iid∼ N (µ, σ2), we have

• For all n, ∑i Xi and ∑i(Xi − X̄n)2 are independent of one another.

• ∑i

(
Xi−X̄n

σ

)2
∼ χ2

n−1

It’s worth emphasizing that the Xi must be Normally distributed.

This can combine quite nicely with the t-distribution with d degrees of freedom, which describes the r.v.

Z√
V/d

where Z ∼ N(0, 1), V ∼ χ2
d, and Z ⊥ V (they’re independent of each other).

With quite a bit of finagling, we can show that

Tn =
X̄n − µ√
∑i(Xi−X̄n)

2

n−1

∼ tn−1
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During a hypothesis test, we have an assumed value for the mean under the null µ0, so that can replace
the unknown µ. The rest is calculated from the data.

What if we had a two-sample test Xi and Yj of n and m observations? If we assume the two samples are
independent (and both Gaussian), we can sum their variances.

What would be the degrees of freedom for the t-distribution N for tN? A conservative estimate is
N = min(n, m). Another method is the Welch-Satterthwaite formula:

N =
(σ̂2

a /n + σ̂2
a /m)2

σ̂4
a

n2(n−1) +
σ̂4

b
m2(m−1)

(The value for N may be fractional.) This value is obtained by approximating the distribution of σ̂2x/n+

σ̂2y/m (with unbiased estimators for the variances) with the "closest" χ2
N distribution. The derivation is a bit

long but potentially worthwhile; see here for the derivation I posted on StackExchange.

10.3 Wald’s test
Say we have a parametric model for a sample of Xi. Let’s assume the MLE asymptotic Normality conditions
for estimating a k-dimensional parameter θ are met. Then we had

√
n
(

θ̂MLE
n − θ

)
(d)−−−→

n→∞
Nk(0, I(θ)−1)

Let’s make the right-side have covariance equal to Ik. We can do this by multiplying the left-hand side
by A = I(θ)1/2. By the Delta Method (taking the gradients..), this ends up multiplying the covariance by
A · AT . Since the Fisher information is symmetric by construction, A = AT and the right side cancels out
completely:

√
nI(θ)1/2

(
θ̂MLE

n − θ
)

(d)−−−→
n→∞

Nk(0, Ik)

Now, let’s perform the transformation f (x) = xTx = ‖x‖2
2 on both sides (which we can do by the

Continuous Mapping Theorem). We are now describing the sum of k iid standard Normal variables; that is
to say, we’re converging to χ2

k :

T(n) = n
(

θ̂MLE
n − θ

)T
I(θ)

(
θ̂MLE

n − θ
)

(d)−−−→
n→∞

χ2
k

(We could also replace I(θ)→ I(θ̂) because θ̂ is a consistent estimator of θ.)

Under a hypothesis testing framework where we assume we have a value θ = θ0, we can calculate all the
value on the left-hand side. Which means we have a test statistic! This is Wald’s test. Since it has no control
over the "direction of deviation" (very loosely, Tn calculates the "squared magnitude of deviation from θ0"),
it is best used for two-sided tests and not the best for one-sided tests (it’ll likely be way too conservative).

10.4 Likelihood ratio test
Suppose instead you have a d-dimensional parameter θ and, rather than fixed all d parameters of θ for your
null hypothesis, you only want to fix r of them:{

H0 : θ = (θ f ixed, θ f ree), θ f ree ∈ Rd−r is free to vary
H1 : θ 6= (θ f ixed, θ f ree)

As with essentially any hypothesis test with "leeway" for H0, we tend to want to compare the "best" pos-
sible candidates for each class. So essentially, we want to compare a constrained MLE θ̂c (which represents
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H0) with the unconstrained MLE θ̂ (which represents H1).

Consider the test statistic that compares the square of the ratio of log-likelihoods:

Tn = log

( Ln(θ̂)

Ln(θ̂c)

)2


By Wilks’s Theorem, assuming H0 is true and the MLE conditions for asymptotic Normality are met, then

Tn
(d)−−−→

n→∞
χ2

r

How did we determine the degrees of freedom? It’s essentially

(df for test) = (df for H1)− (df for H0)

(Kind of makes sense, considering the name "degrees of freedom" and all.)

10.5 Implicit/Multiple Hypotheses
How would you deal with comparing multiple/implicit hypotheses where we don’t fix parameters to spe-
cific values?

Describe your hypotheses in the following way:{
H0 : g(θ) = 0
H1 : g(θ) 6= 0

We can describe them as a function g(θ) and use the Delta Method. For example, g(θ) = (θ3, θ2 − θ1)
tests whether θ3 = 0 and θ1 = θ2. You can then go on to perform e.g. Wald’s test.

Sadly, none of these methods handle inequality constraint(s) in higher dimensions well. A seemingly
promising paper on the subject can be found here.

10.6 Goodness of fit tests
A goodness-of-fit test sees whether a hypothesized distribution describes the data/observed samples well.
This means we don’t have a parametric model (E, Pθ,θ∈Θ) for the data: we need to describe both:

1. the type of distribution (e.g. Normal, Uniform, Poisson); this is a nonparametric, i.e., infinite-dimensional

2. the parameters for the distribution in question

Basically, we’re testing for a point in function space, which is infinite-dimensional.

This sounds pretty difficult. In a way, it is. Most GoF tests don’t have much power (i.e. they rarely reject
the null, even when they should).

10.6.1 χ2 test for discrete distributions.

A categorical/Multinoulli distribution of degree K is the extension of a Bernoulli distribution to K total out-
comes. The distribution itself has K − 1 degrees of freedom. Worth noting is that a properly designated
categorical distribution can describe any PMF.

To compare whether discrete Xi came from a categorical distribution C(p1, · · · , pk−1), you can use the
χ2 goodness-of-fit test, which is simply Wald’s test applied to the categorical distribution:
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Tn =
K

∑
j=1

( p̂j − pj)
2

pj

(d)−−−→
n→∞

χ2
K−1

Here, p̂j is the MLE for pj and is simply count(Xi = j)/n.

Note the somewhat unexpected form of Tn: the summation includes the K’th component, which is
entirely fixed by the first K − 1 choices; and the denominator does not look like the "expected" variance
p(1− p). This all comes from applying Wald’s test to this situation and performing a nontrivial amount of
manipulation. (Hint: Define the categorical distribution using p1, · · · , pK−1 and denote pK = 1−∑K−1

i=1 pi,
i.e. pK is not considered a parameter of the distribution. Now the parameters are all independent, and the
Fisher information matrix will be invertible.)

10.7 Fun (and useful) facts about CDFs.

A possibly interesting fact is that for any X, FX(X) ∼ U[0, 1] (the CDF of a random variable is distributed
uniformly). This actually makes sense when you think about it long enough. It’s sort of a statement about
quantiles: "If I randomly draw an X, it is equally likely to be the 25’th percentile as the 75’th percentile or
90’th percentile, etc."

If FX is invertible, this can be used to simulate drawing from any distribution using the Uniform distri-
bution:

1. Use a random number generator to get a sample u from U[0, 1].

2. The random sample from your target distribution is F−1(u).

Another possibly interesting fact is that the CDF of a r.v. Xi can be written as an expectation:

FX(t) = Pr[Xi ≤ t] = E[1[Xi ≤ t]]

So we can estimate it! Just replace E[1[Xi ≤ t]] → 1
n ∑n

i=1 1[Xi ≤ t] = F̂n(t). This is known as the
empirical (or sample) CDF. (We may drop the hat.)

What properties does our estimator have? By LLN, ∀t ∈ R, F̂n(t)
a.s.−−−→

n→∞
F(t). This is pointwise conver-

gence, which sadly does not guarantee some nice properties we’d hope for. But we’re in luck!

Glivenko-Cantelli Theorem (The Fundamental Theorem of Statistics) The estimator we have described
above enjoys uniform convergence to F(t), i.e.,

sup
t∈R

∣∣F̂n(t)− F(t)
∣∣ a.s.−−−→

n→∞
0

Donsker’s Theorem We can keep going. By CLT, we could say
√

n(F̂n(t) − F(t))
(d)−−−→

n→∞
N (0, F(t)(1−

F(t))), but we can "do one better" (give a tighter bound) using Donsker’s Theorem. If F is continuous, then

√
n sup

t∈R

∣∣F̂n(t)− F(t)
∣∣ (d)−−−→

n→∞
sup

0≤t≤1
|B(t)|

where B(t) is a Brownian bridge on [0, 1].
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10.7.1 The Kolmogorov-Smirnov test, Creating a Pivotal Distribution

So how do we piece it all together? If we have Xi drawn from unknown cdf F and we consider a continuous
CDF F∗, we can have the hypothesis test: {

H0 : F = F∗

H1 : F 6= F∗

For the asymptotic case, we can simply appeal to Donsker’s theorem and use the

Tn =
√

n sup
t∈R

∣∣F̂n(t)− F∗(t)
∣∣

and use tabulated results for the Brownian bridge to figure out what Tn is. To calculate Tn, compare the
points of discontinuity of F̂n(t) with the corresponding points in F∗, and take the max.

What about for finite n? We can use the fact that FX(X) ∼ U[0, 1]. The process is as follows:
Repeat the following many times:

1. Generate n iid samples Yi ∼ U[0, 1].

2. Sort Yi → Y(i).

3. Describe F̂n(
i
n ) = Y(i).

4. Calculate Tn =
√

n×maxi∈{1,··· ,n}(F̂n(
i
n )−

i
n )

5. Store resulting value (in, e.g., list L).

After generating this pivotal distribution (so-called because it doesn’t depend on parameters we don’t
know), compute Tn for the sample you actually observed:

1. Calculate Yi ← F∗(Xi).

2. Sort Yi → Y(i).

3. Describe F̂n(
i
n ) = Y(i).

4. Calculate Tn =
√

n×maxi∈{1,··· ,n}(F̂n(
i
n )−

i
n )

5. Compare Tn to values in list L generated above. The quantile of Tn determines its p-value: p =
1− quantile.

10.7.2 Kolmogorov-Lilliefors test

What if we just want to know if our data come from a Normal distribution? If we use a test statistic

Tn =
√

n sup
t∈R

∣∣∣F̂n(t)−Φ(t; µ̂, σ̂2)
∣∣∣

we need to use a different test than the KS test, because we have partially fitted our proposed distri-
bution to the data. The appropriate test is the Kolmogorov-Lilliefors test. It is more stringent because of the
partial fitting: FKL(t) > FKS(t) ∀t, which means the same-valued test-statistic will have a smaller p-value
for KL compared to KS.
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10.7.3 Quantile-Quantile Plots

Even though we talked about all this, very often we simply visually inspect proximity to a desired distri-
bution using quantile-quantile plots. If we want to see whether Xi may have F as its governing distribution,
we plot X(i) = F−1

n ( i
n ) on the Y-axis, and F−1( i

n ) on the X-axis:

(xi, yi) = (F−1(
i
n
), F−1

n (
i
n
))

If the resulting line is near y = x, then it’s probably OK.

We can consider relative weights of tails using a Q-Q plot. Consider the top-right quadrant of the Q-
Q plot. If points are to the right of y = x, then y < x. The target distribution’s q’th quantile is larger
than the sample’s q’th quantile. This suggests that the target distribution has thicker tails than the sample
distribution. One can make similar inductions for other patterns.

11 Linear Regression

(We have discussed Bayesian statistics in depth in the Probability review sheet and so do not repeat our-
selves here.)

Consider a sample of (Xi, Yi) pairs for a random variable/vector X and another variable Y. A common
goal is to understand the joint distribution P of (X, Y); or (perhaps more often) the conditional distribution
of Y given X.

We could model P entirely by trying to find the joint PDF fX,Y(x, y) and the conditional PDF of Y given

X, fY|X(y | x) = fX,Y(x,y)∫
y∈Y fX,Y(x,y)dy .

We often model P partially. Most often1, we attempt to describe the conditional expectation of Y given
X, called the regression function µ(x):

x 7→ µ(x) := EY[Y | X = x] =
∫

y∈Y
y fY|X(y | x)dy

The space F of possible regression functions f is nonparametric (infinite-dimensional), so we should
probably limit ourselves in some way. If we assume that µ is an affine function:

µ(x) = a + bx, x ∈ R1 (univariate regression)

µ(x) = xT β, x ∈ Rd+1, d ∈ {1, 2, · · · } (multivariate regression)

we are talking about linear regression. We first discuss univariate regression, then extend to multivariate
regression.

11.1 Univariate regression
One can perform theoretical regression, i.e. find the optimal parameters a∗, b∗ such that

(a∗, b∗) =argmin
(a,b)∈R2

E
[
(Y− (a + bX))2

]
You can solve the minimization problem (set gradient to zero, ...) to find that

b∗ =
Cov(X, Y)

Var(X)
, a∗ = E[Y]− b∗E[X]

1 In other cases, we may be more interested in the conditional median/α-quantile, conditional variance, etc.
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The resulting line, which minimizes the sum of squared residuals (SSR) (technically the average squared
residual above, but the difference is a factor of n), doesn’t fit through an observed sample perfectly. We can
call the residuals noise ε = Y− (a∗ + b∗X). So we can write

Y = a∗ + b∗X + ε

where, by construction,

1. E[ε] = 0

2. Cov(X, ε) = 0

Now, in practice, we don’t know the true ("population") SSR, expectations, variances, and covariances
for X and Y (E[X], Cov(X, Y), · · · ). But we have samples Xi and Yi so we can estimate all of them! That is
to say, we now solve:

(â, b̂) =argmin
(a,b)∈R2

1
n

n

∑
i=1

[
(Yi − (a + bXi))

2
]

=argmin
(a,b)∈R2

n

∑
i=1

[
(Yi − (a + bXi))

2
]

and we get our estimators â for a∗ and b̂ for b∗ which are esseentially plug-in estimators of the theoret-
ically optimal values described above (Cov(X, Y) → X̄Y − X̄Ȳ, · · · ). (We can drop the 1/n factor because
the argmin does not change when we multiply/divide by a constant positive factor. Now we’re truly min-
imizing the observed SSR.) We end up with an estimate for the optimal linear model:

Yi = â + b̂Xi + εi

Remember that ε is also a random variable! We can ask questions like "Does it look Gaussian?" (which
would use a variant of the KL test). We could also simply make an assumption about its form: most
commonly, that it’s Gaussian N(0, σ2). In which case, we have observations of ε, so we can estimate its
variance σ2, etc.!

11.2 Multivariate Regression

In the multivariate case, X′ ∈ Rd, d ≥ 1 is a random vector. We augment X′ by prepending a 1 to the vector
(to simplify notation). So [1|X′i ] = Xi ∈ Rd+1. Let’s define p := d + 1, p ≥ 2. By previous notation, X is a
column vector.

Now define a design matrix X ∈ R× comprised of each observations Xi stacked vertically on top of
each other (i.e., each row corresponds to one observation). Let β ∈ Rp be a column vector, Y ∈ Rn be
the concatenation of observations on the target variables (aligned with the appropriate row in the design
matrix), and ε ∈ Rn be the residuals per observation pair. Now we have the relationship:

Yi = XT
i β + εi, Y = Xβ + ε

And we determine β by minimizing the SSR:

β̂ =argmin
β∈Rp

1
n

n

∑
i=1

(Yi − XT
i β)2

=argmin
β∈Rp

n

∑
i=1

(Yi − XT
i β)2

=argmin
β∈Rp

‖Y−Xβ‖2
2
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The resulting estimator is the least squares estimator of β, β̂MLE. An analytic computation (take gradient
wrt β, set equal to zero, solve...) shows that

β̂LSE = (XTX)−1XTY

A geometric interpretation: Xβ̂ is the orthogonal projection of Y onto the subspace spanned by the
columns of X:

Xβ̂ = PY, P = X(XTX)−1XT

11.2.1 Gauss-Markov Assumptions and subsequent properties

Let’s assume the following are true:

1. The design matrix is deterministic and rank(X) = p. (This suggests you control and decide in ad-
vance which samples Xi you get to see. In reality, this is not often the case, but you can instead say
"conditioned on X = Xobserved, ...")

2. The model is homoskedastic, i.e. εi are iid

3. The noise vector ε ∼ Nn(0, σ2 In) for some (known or unknown) σ2 > 0

(These are the Gauss-Markov assumptions.) Then:

1. Y ∼ Nn(Xβ∗, σ2 In)

2. β̂ ∼ Np(β∗, σ2(XTX)−1)

3. Quadratic risk of β̂: E[
∥∥β̂− β

∥∥2
2] = σ2trace((XTX)−1)

4. Prediction error: E[
∥∥Y−Xβ̂

∥∥2
2] = σ2(n− p)

5. An unbiased estimator for σ2 is σ̂2 =
‖Y−Xβ̂‖2

2
n−p =

∑i ε̂2
i

n−p .

6. (n− p) σ̂2

σ2 ∼ χ2
n−p

7. β̂ ⊥ σ̂2.

This laundry list of results come from (1) algebra/manipulation/reasoning, (2) previous results (e.g.
Cochran’s Theorem).

One thing that may help elucidate the others (though the explanation may need to be cleaned up): the
chi-squared distribution has n − p degrees of freedom. We end up having p degrees of freedom when
choosing the best estimator β̂, but the original sample space in Rn (which we were in prior to projecting
down to β-space ∈ Rp) has n dimensions. So ε2 only gets to wiggle around freely along n− p dimensions;
the rest are "pegged down" because we chose β̂ in order to minimize the SSR.

11.2.2 (Multiple/Implicit) Hypothesis testing on parameters.

How would you test hypotheses on these parameters? With the Gauss-Markov assumptions, we have
Normally distributed β̂ and chi-squared distributed σ̂2. So we can perform t-tests! What if you’re doing an
implicit test? Wald’s test and the Delta Method! For example,{

H0 : β1 = β2
3H1 : β1 6= β2

3

You can define g(β) = β2
3 − β1, take its gradient, apply Delta Method, etc.
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What about multiple hypotheses at once, e.g. ∀i, βi = 0? You’ll need to be more careful to ensure you
control the signficance level properly. A simple but very conservative method to achieve familywise error
rate (FWER) α is to test each of the K hypotheses at level α/K. This is called the Bonferroni correction.

A method that controls the FWER controls the probability that any of the hypotheses are false positives.
You’ll probably want a less excessively conservative method, which instead constrols for the false discovery
rate (FDR), which describes the fraction of positives that are false positives. One example of a method that
controls the FDR is the Benjamini-Hochberg method, described here.

11.2.3 Other types of estimators.

We have been minimizing an objective function J to get our estimator β̂:

argmin
β

J(X, Y, β)

When we chose J to be ‖Y−Xβ‖2
2 = SSR(X, Y, β), we’d get the least-squares estimator β̂LSE. Under the

Gauss-Markov assumptions, this is β̂MLE.

But what if we want to minimize a different function? Well, that’s basically M-estimation! (If the condi-
tions are met, we can appeal to some of those results as well!) We’ll generally write our objective function
as

J(X, Y, β, λ) = L(X, Y, β) + λR(β)

where L is a loss function that describes how well/poorly our model fits the data, R is a regularization
function that penalizes certain values of β more heavily than others, and λ is the regularization factor that
determines the relative importance of L and R; larger λ places more importance on R compared to L.

(Note: Technically, what we’re "officially" doing is minimizing L subject to the constraints described by
R, and then we use the method of Lagrange multipliers to recast the optimization function to the "soft"
form described above. This works fine; there would be a correspondence between the expression for λ
(frequentist viewpoint) and the prior placed on β (Bayesian viewpoint). See more below.)

Some examples/names of estimators with special names. One should consider the estimators’ risk,
variance, bias, etc and the use-case at hand when deciding which is best:

1. The ordinary least squares (OLS) estimator is the same as the "regular" least-squares estimator; R = 0
and L = ‖Y− Xβ‖2

2.

2. The ridge regression estimator has R(β) = ‖β‖2
2. This lowers the "energy" of the estimator, and might

provide enough curvature to J to create a unique minimizer. (Otherwise, collinearity among features
will "break" the estimator and/or greatly increase variance.)

3. The least absolute shrinkage and selection operator (LASSO) estimator has R(β) = ‖β‖1
1. This is a soft

form of lowering the "dimensionality" of the estimator.

4. The principal component regression (PCR) estimator instead considers the following: Consider the eigen-
decomposition XTX = PDPT . Now take the first k columns of P and , called Pk (p× k). Now describe
β̂ = Pkγ̂, where γ̂ is found by minimizing L = ‖Y− XPkγ‖2

2. This is essentially fitting β onto the
k-dimensional subspace that is "closest" to the p-dimensional space spanned by X. This is another
way to ensure multicollinearity or uninformative features do not "break" an OLS estimator (having
huge variance, etc).
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11.2.4 Connection with Bayesian inference.

There is in fact a really strong connection with Bayesian inference at play here, especially when we are
assuming a model for β. To make the comparison clearer, let’s assume we want to maximize J instead of
minimize it (by doing J′ = −J, we get the exact same answers, so our problem hasn’t actually changed —
we just have fewer negative signs to think about).

Consider a Bayesian inference setup. You have a random variable Θ you want to estimate. You have
a prior belief π(θ), then you observe Xi, Yi ∼ PΘ and use its likelihood function Ln(X, Y | θ) to update to
your posterior distribution:

π(θ | Xi, Yi) = const× Ln(X, Y | θ)π(θ) ∝ Ln(X | θ)π(θ)

Normally, after this calculation, you’d do whatever you want with your posterior distribution π(θ |
Xi, Yi). If all you were looking for was the maximum a posteriori (MAP) estimator for Θ, Θ̂MAP, you could
simply maximize

max
θ∈Θ

π(θ | Xi, Yi) = Ln(X | θ)π(θ)

Now simply take the log. (This gives the same optimizing argument.) Now you’re maximizing:

max
θ∈Θ

log(π(θ | Xi, Yi)) = log(Ln(X | θ)) + log(π(θ))

Now compare! The log-likelihood plays the role of the loss function: log(Ln(X, Y, θ))↔ L(X, Y, β), and
the prior belief plays the role of the regularization function: π(θ) ↔ R(β), with λ balancing the relative
importance of each. So when you place a regularization term in an objective function, you’re implicitly
indicating a prior belief on the parameter space! (Which I’d say counts as "pretty darn neat".)

12 Generalized Linear Models (GLMs)

In the previous section on linear models, we made two main assumptions to get the results we obtained:

1. The target variable given the data was Gaussian: Y | X = x ∼ N(µ(x), σ2)

2. The regression function was linear: µ(x) = xT β.

But there are cases where these assumptions don’t make much sense. For example, if the target variable
Y | X = x ∼ Ber(p). We have p = E[Y | X = x] = µ(x) ∈ (0, 1), so clearly µ(x) 6= xT β (which has range
R).

Changes in x should affect the mean of Y, and we should be able to describe the change additively in
some way. But how? Probably not through an additive change to p directly, because than we can have
p < 0 or p > 1. It might make more sense to say it increases the log-odds of something occurring, so that it’s
additive to log

(
p

1−p

)
. How do we fit this notion to our linear model framework above?

This is where the link function g comes in. In a generalized linear model (GLM):

1. Y | X = x ∼ a member of exponential family

2. We choose a monotone increasing and differentiable function g : Range(Y) → R so that g(µ(x)) =
xT β. g is the link function.

We choose the distribution based on information we have about the problem at hand, as long as it’s
a member of an exponential family (defined below). From there, we choose a link function g that makes
g(µ(x)) linear in β (though their coefficients k(x) need not be linear in x).
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Why restrict our choice of distribution to members of an exponential family? This allows us to claim
that the asymptotic Normality of the MLE also applies to such models (if technical conditions are met), allowing
us to perform hypothesis tests on our parameters, etc.

12.1 Exponential Families
OK, so what’s an exponential family?

A family of distributions {Pθ : θ ∈ Θ}, Θ ⊂ Rk is a k-parameter exponential family on Rq if there exists the
following real-valued functions:

1. natural parameters of θ: η1(θ), · · · , ηk(θ)

2. sufficient statistics of the target variable’s observations Y: T1(z), · · · Tk(z)

3. bias functions of θ and z: B(θ), h(z)

Which allow us to write

fθ(z) = exp

[
−B(θ) +

k

∑
i=1

ηi(θ)Ti(z)

]
h(z)

Basically, every function of the parameters and the observations can be decomposed into a product:
K(θ, z) = f (θ)g(z).

What does any of this have to do with our GLM?
We observe pairs (Xi, Yi). θ is the parameter(s) of our the distribution modeling Zi = Yi | Xi. We need

to be able to write the components of θ in terms of E[Zi] = E[Yi | X = xi].
Next, we have chosen a link function for our regression function so that g(µ(xi)) = g(E[Y | X = xi]) =

xT
i β.

So if we can describe θ = f1(µ(x)), · · · , fk(µ(x)) = f1(g−1(xT β)), · · · , fk(g−1(xT β)), we can rewrite
fθ(zi) → fβ(yi | xi, β). Now we can maximize the likelihood across all observations wrt β to get our esti-
mator for β̂!2

The problem, of course, is that this is not likely to have a closed-form solution for β and would likely
involved stochastic gradient ascent, iteratively reweighted least squares, Fisher’s scoring method, Bayesian
methods with approximations of the posterior distribution, etc.

12.1.1 Canonical Exponential Families, Canonical Links, and an example.

Often, we analyze the case where k = 1. We can write many such distributions as a canonical exponential
family, of the form:

fθ(z) = exp
(

zθ − b(θ)
φ

+ c(z, φ)

)
where φ is called the dispersion parameter (and as usual, for our purposes, we can substitute Z = Y | Xi

where Xi affects θ). If φ is unknown, we may be dealing with k = 2 (e.g. for Normal distribution, φ = σ2,
so if σ2 (and µ) aren’t known, k = 2); if φ is known, you’ll have a one-parameter exponential family with θ
as the canonical parameter.

You may often hear about the shape and scale of a distribution. These can be thought of as directly related
to θ and φ respectively: fθ(

x
φ ).

Recall that for the log-likelihood function l(θ), we have:

2Excitement, not factorial.
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E
[

∂l
∂θ

]
= 0

E
[

∂2l
∂θ2

]
+ E

[
∂l
∂θ

]2
= 0 (Fisher Information equivalence)

We can use this to show that for a canonical exponential family:

E[Z] = b′(θ)

Var(Z) = φ× b′′(θ)

For our purposes, we consider Z = Y | Xi, so E[Z] = E[Y | X] = µ(X) = b′(θ).

Regarding link functions, given the form we’ve described at first, it would be nice to have a map g that
maps µ to the canonical parameter θ, i.e., g(µ) = θ. This is called the canonical link function for the exponential
family. But we have µ = b′(θ), so g(b′(θ)) = θ =⇒ g = b′−1 – the link function is the functional inverse of
b(θ).

12.2 A GLM workflow.
All of this might feel like gobbledygook. Let’s describe the general flow of how you’d connect everything
together. We are given n iid samples (Xi, Yi) (assume we’ve augmented each Xi by prepending it with a 1,
to capture a potential offset):

1. Choose a model Y | X ∼ ExpFamilyMember(π) for model parameter π. We assume π depends on a
linear combination of the components of X through a fixed β, i.e. through XT β (so you can imagine
write π(X; β) or πX everywhere, but the notation is suppressed for convenience). This is why this is
a generalized linear model.

2. Decide on a link function g : Dom(µ(x))→ R so that g(µ(X)) = XT β (for the β which you are aiming
to estimate).

If you would like to use the canonical link function g(µ) = θ = H(π), get the likelihood function
in canonical form to determine the form of H(π).

3. Determine the relationship µ(X) = E[Y | X] = f (π).

If using the canonical exponential family, it will turn out that µ(x) = f (π) = b′(θ) = b′(H(π)).

4. Invert g(µ(X)) = XT β = g( f (π))→ π = f−1(g−1(XT β)) = h(XT β).

If using the canonical link function, you already fixed that g(µ(x)) = H(π), so f−1(g−1(·)) =
h(·) = H−1(·).

5. Replace π → h(XT β) in your likelihood function, and maximize likelihood wrt β to get an esti-
mator β̂(X). This likelihood function will likely not be analytically solvable, so you may need to
collect a sample and plug in the realized values X = x, then use stochastic gradient ascent, itera-
tively reweighted least squares, etc. to approximate β̂(x). (These methods were not discussed in this
course.)

6. Bonus: If the model is well-specified (with true model parameter π∗, described with true parameter

β∗) and the MLE conditions are met, you have asymptotic Normality:
√

n(β̂− β∗)
(d)−−−→

n→∞
N(0, I(β∗)−1).

That means you can perform hypothesis tests on β∗, π∗, etc. using e.g. Delta Method.

You noticed that many things became "fixed" and directly related to functions in the exponential family’s
form if we decided to use the canonical link function. This is why many people refer to the canonical link
as a "natural" choice that leads to "natural" parameters to study.
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12.2.1 Logit link function, and logistic classification regression.

One of people’s favorite link functions is the logit link function:

g(µ) = log
(

µ(X)

1− µ(X)

)
= XT β

This is the canonical link function for a Bernoulli distribution (which is an incredibly important distri-
bution, e.g. can model probabilities of events occurring):

fp(y | x) = py(1− p)1−y

= exp
(

ln
(

py(1− p)1−y
))

= exp(y ln(p) + (1− y) ln(1− p))
= exp(y(ln(p)− ln(1− p)) + ln(1− p))

= exp
(

y ln
(

p
1− p

)
+ ln(1− p)

)
The above means that θ(p) = ln

(
p

1−p

)
, and for Bernoulli distribution, µ(x) = E[Y | X = x] = p.

In fact, people love using the (canonical) logit link function for a Bernoulli model so much that if you:

1. invert the function and plug in appropriately:

θ(µ) = ln
(

µ

1− µ

)
= g(µ) = XT β→ µ(θ) = exp

(
1

1 + e−θ

)
= exp

(
1

1 + e−XT β

)
= C(X)

2. choose an arbitrary threshold t,

3. use C and t as a classifier (classify all X such that C(X) ≥ t as, say, +1, and the rest as −1)

then you’ll have made the classifier known as logistic regression.3

The Wikipedia article on GLMs has more links and useful information about GLMs.

3Apparently they were so enamored by the process that they didn’t notice that they end up performing classification, not regression.
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